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We study the problem of counting the number of coverings of a d-dimensional 
rectangular lattice by a specified number of monomers and dimers. This 
problem arises in several models in statistical physics, and has been widely 
studied. A classical teclmique due to Fisher, Kasteleyn, and Temperley solves 
the problem exactly in two dimensions when the number of monomers is zero 
(the dimer covering problem), but is not applicable in higher dimensions or in 
the presence of monomers. This paper presents the first provably polynomial- 
time approximation algorithms for computing the number of coverings with any 
specified number of monomers in d-dimensional rectangular lattices with peri- 
odic boundaries, for any fixed dimension d, and in two-dimensional lattices with 
fixed boundaries. The algorithms are based on Monte Carlo simulation of a 
suitable Markov chain, and, in contrast to most Monte Carlo algorithms in 
statistical physics, have rigorously derived performance guarantees that do not 
rely on any assumptions. The method generalizes to counting coverings of any 
finite vertex-transitive graph, a class which includes most natural finite lattices 
with periodic boundary conditions. 

KEY WORDS: Monomer-dimer problem; dimer coverings; lattice statistics; 
Monte Carlo methods; relaxation time; mixing time; approximation algorithm; 
Fisher-Kasteleyn-Temperley algorithm; perfect matchings; monomer-dimer 
correlations; vertex-transitive graphs. 

1. I N T R O D U C T I O N  

1.1. Histor ica l  B a c k g r o u n d  

A f u n d a m e n t a l  p r o b l e m  in  l a t t i ce  s t a t i s t i c s  is t h e  m o n o m e r - d i m e r  p r o b l e m ,  

in w h i c h  t he  s i tes  o f  a r e g u l a r  l a t t i ce  a re  c o v e r e d  b y  a n o n o v e r l a p p i n g  
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arrangement of monomers (molecules occupying one site) and dimers 
(molecules occupying two sites that are neighbors in the lattice). The three- 
dimensional problem occurs classically in the theory of mixtures of 
molecules of different sizes tlxl and the cell-cluster theory of the liquid 
stateJ 4~ In two dimensions, the problem serves as a model for the adsorp- 
tion of diatomic molecules on a crystal surface, t36~ (In this last example, 
'monomers' correspond to empty sites.) 

Most thermodynamic properties of the system can be deduced from 
knowledge of the number of ways of covering the lattice with given 
numbers of monomers and dimers. Suppose the lattice has 2m sites, and 
consider coverings consisting of s dimers and 2 ( m -  s) monomers; the ratio 
p =s/m is the dimer density. The essential problem is to compute the 
number of coverings as the lattice size m increases, for various values 
of p. Considerable effort has been invested in this problem over the past 
60 years. In the remainder of this subsection we present a rather incomplete 
survey; for further information see, for example, refs. 17, 29, and 42 and the 
references given there. 

The monomer-dimer problem gained prominence in 1937 through the 
paper of Fowler and Rushbrooke. 18~ A breakthrough was achieved in 1961, 
when, independently, Fisher, Kasteleyn, and Temperley provided an 
analytic solution for the case of dimer coverings (i.e., arrangements with 
dimer density 1) on a two-dimensional rectangular lattice, t6, 27, 39~ The key 
idea is to express the number of dimer coverings as a Pfaffian, which in 
turn can be evaluated as the square root of an associated determinant. 
These calculations give precise asymptotics for f(n),  the number of dimer 
coverings of an n x n rectangular lattice (with n even); specifically, 

( - 1 )  ~ 
l l n f ( n ) ~ 2 ,  as n--, ~ ,  where 2 = - 1 ~  (~r+ i_)2=0.29156.." 
n -  ~ r>~0 

Moreover, since the problem is reduced to evaluation of a determinant, the 
quanti tyf(n)  can be computed numerically for any value ofn  in an efficient 
manner. In fact, this technique is more general and allows the number of 
dimer coverings of any planar graph (or indeed, of any family of graphs 
with fixed genus) to be computed efficientlyJ 28~ 

Unfortunately, these methods do not extend to two-dimensional lat- 
tices with dimer density less than 1, or to lattices in higher dimensions 
even when the dimer density remains 1. This limitation was formalized by 
Hammersley et al. ~15~ and, in a different sense, by Jerrum. ~18J Indeed, the 
three-dimensional dimer covering problem, which asks for the numberf (n)  
of ways of filling an ii x n x n rectangular lattice with dimers, is one of the 
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classical unsolved problems of solid-state chemistry. A few facts are known: 
for example, ln( f (n)) /n  3 tends to a finite limit 2 as n tends to infinity, tl2~ 
Hammersley tl3) proved the lower bound 2/>0.418347, while Fowler and 
Rushbrooke ~s) showed the upper bound 2~<0.54931. It has been conjec- 
tured that 2 lies between 0.43 and 0.45. Bhattacharjee et al. ~1~ studied the 
phase transition behavior of the three-dimensional model. Notwithstanding 
these efforts, no reliable method is known for computing f ( n )  to good 
accuracy. A similar lack of rigorous results holds for the problem at dimer 
densities less than 1, even in two dimensions. Notable exceptions are series 
expansions valid at low densities tl~ and lower bounds on the free 
energy.~2, 16) 

1.2. Results 

This paper makes progress on the monomer-dimer problem in cases 
where the technique of Fisher, Kasteleyn, and Temperley fails. Specifically, 
we give a polynomial-time algorithm for computing, to arbitrary precision, 
the number of coverings of a rectangular lattice in any dimension with any 
specified dimer density. Our algorithm applies to the case of periodic 
boundary conditions, i.e., the edges of the lattice are "wrapped around" to 
make it toroidal. 

To make the behavior of the algorithm precise, for a fixed dimension 
d, let f (n ,  s) denote the number of coverings of the d-dimensional rectan- 
gular lattice [ 1 ..... n] a (with periodic boundary conditions) by s dimers and 
n d -  2s monomers. 

Defini t ion.  A fully polynomial randomized approximation scheme 
(fpras) for f is a probabilistic algorithm which, on inputs n,s, and 
e, fi ~ (0, 1 ), always runs in time polynomial in n, e-~, and log ~-1, and out- 
puts a number A (a random variable) that, with probability at least 1 - 6 ,  
satisfies 

f(n,  s)(1 +e)  -I  ~<A ~ f ( n ,  s)(1 +e)  

The prob~,bilistic algorithm can be thought of as performing a suitable 
Monte Carlo experiment (see Section 1.4) and using it to obtain a statisti- 
cal estimate off(n,  s). The parameter e determines the accuracy required of 
the estimate, while 6 controls the confidence level. A fpras provides an 
efficient means of numerically computing f ,  in the sense that its running 
time grows only slowly (i.e., polynomially) with the lattice size n, the 
accuracy parameter e, and the confidence parameter 6. This is widely 
accepted in computer science as a robust criterion for algorithmic 
efficiency; for a justification of this definition, see, for example, refs. 9 and 
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26. (By contrast, note that naive algorithms based on exhaustive enumera- 
tion of coverings have a running time that is exponential in n, and are thus 
computationally useless in practice unless n is very small.) 

The main result of this paper is a fpras for computing the above 
function f (n ,  s) for rectangular lattices of any dimension d. This extends 
previous computational techniques in two ways. First, it enables one to 
compute the number  of dimer coverings in lattices in three and higher 
dimensions. Second, it enables one to count coverings with dimer density 
less than 1, a problem that was not approachable by the methods of Fisher, 
Kasteleyn, and Temperley even in two dimensions. 

Our  algorithm provides a feasible approach to numerical computat ion 
of such quantities as f (n) ,  the number of dimer coverings of an n x n x n 
rectangular lattice in three dimensions. This is apparently the first such 
method whose running time provably grows only polynomially with n. We 
should, however, inject three qualifying remarks here. First, the running 
time of the algorithm, though polynomial, is not quite small enough to be 
genuinely practical; nonetheless, we strongly suspect that careful honing of 
the algorithm and its analysis will lead to a practical method. Second, the 
algorithm provides only statistical estimates off ,  rather than precise values; 
we stress, however, that the error bars on these estimates can be made 
arbitrarily small, and, in contrast to previous Monte Carlo approximation 
methods, are completely rigorous and require no assumptions of any kind. 
Third, although the algorithm allows f(n) to be computed efficiently for 
each 17, we do not provide bounds on the time required to compute the 
asymptotics of f (n )  as n tends to infinity, and therefore the entropy 
lim . . . . .  ln(.)C(n))/n 3. This would require, in addition, bounds on the rate of 
convergence of this series. 

As we have stated, the above result holds for lattices with periodic 
boundary conditions. In the two-dimensional case, the method extends to 
lattices with fixed boundaries: i.e., we again get a fpras for computing the 
number of coverings with any specified dimer density. This result again 
goes beyond the technique of Fisher, Kasteleyn, and Temperley for planar 
graphs, which holds only for dimer density 1. 4 

Finally, we can extend the above results to a much broader class of 
lattices, or to any family of graphs with sufficiently strong symmetry 

4 If the number of monomers is some fixed constant 2c (so that the dimer density tends to 1 
as n---, oo), then the Fisher, Kasteleyn, and Temperley technique can in principle be used, 
as follows. For each possible set of 2c positions for the monomers, use the technique to 
count dimer coverings in the graph formed by removing these sites from the lattice: this 
works because the graph remains planar. Now sum over all possible positions for the 
monomers. However, this approach no longer runs in polynomial time if c is allowed to 
grow with n, and is extremely inefficient in practice even for quite small fixed values of c. 
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properties. Specifically, we get a fpras for counting coverings, with any 
specified dimer density, of any finite vertex-transitive graph. 5 (A graph G 
is vertex-transitive if, for any pair of vertices u and v, there is an 
automorphism of G that maps u to v.) This class includes most other com- 
monly studied lattices with periodic boundary conditions, such as the 
triangular lattice, the hexagonal lattice, 6 and the body- and face-centered 
cubic lattices. 

1.3.  T e c h n i q u e s  

The algorithms mentioned above are all based on a Monte Carlo pro- 
cedure due to Jerrum and Sinclair, ~2~ originally inspired by the 
approach of Broder, 13~ for approximating the number of matchings in a 
graph. A match#~g in a 2rn-vertex graph G = ( V, E) is any subset M of the 
edge set E such that no two edges in M have a common endpoint. Clearly, 
matchings of cardinality s correspond precisely to monomer--dimer 
arrangements in G with s dimers and 2 ( m - s )  monomers.  The classical 
monomer-d imer  problem discussed in the previous two subsections is the 
special case in which G is the d-dimensional rectangular lattice [ 1 ..... n] d 
for some d. The Monte Carlo algorithm simulates a reversible Markov 
chain whose state space is the set of all matchings in the graph, and which 
converges to an equilibrium distribution in which each matching has a 
certain natural weight (see Section 1.4 for details). 

To quantify the behavior of the Monte Carlo procedure, we require 
some further terminology. Matchings in G of cardinality m are called per- 
fect matchings, and those of cardinality m - 1  are called near-pelfect 
match#Tgs: these correspond respectively to dimer coverings and coverings 
with precisely two monomers.  We define the quantity 0c(G) to be the ratio 
of the number of near-perfect matchings to the number of perfect 
matchings in G (assuming the latter is nonzero). An application of the 
Monte Carlo procedure of Jerrum and Sinclair yields the following result. 

T h e o r e m  1 (Jerrum and Sinclair, Ref. 20, Theorem 5.3). There 
exists a fpras for the number  of matchings of any cardinality in any family 
of 2m-vertex graphs G that satisfies ~(G)<~q(m), for a fixed polynomial q. 

For graphs, as opposed to rectangular lattices, the definition of fpras must be modified so 
that the input is a 2m-vertex graph G together with a number s, and the running time is a 
polynomial function of m, e- ~, and log 6- ~. 
An analytic solution to the dimer covering problem for this lattice has been known for some 
timej4L 28~ In contrast to the rectangular lattice, tile assumption of periodic boundary condi- 
tions is important here: EIser ~5~ has solved the dimer covering problem on a hexagonal 
lattice with fixed boundaries, and shown that the result depends significantly on the shape 
of the boundary. 
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In fact, the running time of the fpras is intimately related to ~(G), and 
actually depends linearly on it. We shall sketch the algorithm and explain 
this connection in Section 1.4. For the moment, however, we merely note 
that a good upper bound on ~(G) will give us an efficient approximation 
algorithm for the number of monomer--dimer coverings. 

The ratio ~(G) measures the factor by which the number of near- 
perfect matchings in G exceeds the number of perfect matchings. Note that 
this ratio is always at least m, since the removal of any edge from a perfect 
matching yields a unique near-perfect matching. For the algorithm to be 
efficient, we want the ratio to be not too much larger than m: in particular, 
for a fpras it must be bounded above by a polynomial function of m for the 
family of graphs in question. Note that this is not a trivial property: it is 
not hard to construct a family of 2m-vertex graphs, m = 1, 2,..., for which 
the ratio grows exponentially with m. We will discuss this issue in more 
detail in Section 4. 

Our main technical contribution in this paper is to prove that the ratio 
0~(G) is small for lattices and, more generally, for any family of graphs with 
sufficiently strong symmetry properties. Specifically, we show that if G is 
the d-dimensional rectangular lattice [ 1, n ] a with periodic boundary con- 

1 d', m 2 l n 2 d "  ditions (so that m = ~ n  ), then ~(G)~< = This ensures that the 
Monte Carlo algorithm is in fact a fpras: i.e., its running time grows only 
polynomially with n for any fixed dimension d. A similar bound holds for 
arbitrary vertex-transitive graphs: namely, if G is a vertex-transitive graph 
with 2m vertices, then ~(G)~<4m 3, and o~(G)<~m 2 if in addition G is 
bipartite. 

We stress that our Monte Carlo algorithm differs from earlier ones for 
monomer-dimer systems (see, e.g., ref. 14) and indeed for many other 
problems in statistical physics, in that it is guaranteed (independent of any 
heuristic arguments) to provide statistically reliable estimates in a running 
time that grows only polynomially with the number of lattice sites. Monte 
Carlo algorithms with this property have recently been devised for various 
other problems, such as the Ising model ~2~J and the ice modeU 32~ In all 
cases, the key to the'analysis is to prove a good bound on the rate of con- 
vergence to equilibrium of the Markov chain being simulated (often called 
the relaxation time, or mix#~g time, of the chain). For recent surveys of the 
analytical technology developed for estimating mixing rates of Markov 
chains, see, e.g., refs. 22, 24, and 38. 

Our proofs of the above bound for lattices and general vertex-tran- 
sitive graphs, presented in the next two sections, are elementary and 
construct explicit injections from pairs of near-perfect matchings to pairs of 
perfect matchings. The proofs also make crucial use of the strong symmetry 
properties of the lattice (and of arbitrary vertex-transitive graphs), which 
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allow any matching (monomer-dimer configuration) to be translated. We 
conjecture that this technique may shed more light on other quantities 
related to monomer--dimer systems, and in particular the correlation 
between monomers at two specified sites, as studied in two dimensions by 
Fisher and StephensonJ 7~ 

The remainder of the paper is organized as follows. In Section 1.4, .for 
the sake of completeness, we sketch the Monte Carlo algorithm of ref. 20 
upon which this paper is based. Sections 2 and 3 contain our technical con- 
tributions: in Section 2 we prove upper bounds on e(G) for rectangular 
lattices with periodic boundary conditions in any dimension, and with fixed 
boundaries in two dimensions; in Section 3 we extend our techniques to 
handle arbitrary finite vertex-transitive graphs. Finally, in Section 4 we 
conclude with some further remarks on the physical and combinatorial 
significance of the ratio e(G), together With some open problems. 

1.4. O v e r v i e w  of  the  A l g o r i t h m  

This subsection is devoted to a sketch of the Monte Carlo algorithm 
of Jerrum and Sinclair, ~-'~ which counts monomer-dimer coverings in any 
family of graphs G for which 0~(G) is small. This material is not essential to 
the technical development of the paper, but is included for the benefit of 
the reader interested in the background to Theorem 1. 

Let G = ( V , E )  be a graph with [VI =2m that contains a perfect 
matching. Let p be any positive real number, and associate with each 
matching M in G a weight w(M)=pIMI, where [M] denotes the cardinality 
of matching M. Define the monomer-dimer partition function (or generating 
function) of G by 

= E w(M) = Z 
M s=O 

where the coefficient as is the number of matchings in G of cardinality s. 
Thus, in the monomer--dimer problem on G, we are trying to compute the 
coefficients a~: for various values of s. In what follows, when G is under- 
stood we shall suppress the subscript and write Z in place of Zo. 

The Monte Carlo method described in ref. 20, Section 4, simulates a 
Metropolis-style Markov chain whose state space is the set of matchings in 
G and whose equilibrium distribution n~, is 

/AI MI 

n,,(M) = Z(/t) 
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Thus the equilibrium probability of a matching M is proportional to its 
weight, and the normalizing factor is the partition function. In this chain, 
a transition is possible between two matchings if and only if they differ up 
to the addition, deletion, or exchange of one edge. The standard 
Metropolis acceptance rule is applied to proposed transitions so as to 
obtain the desired equilibrium distribution gt,- Thus, more precisely, tran- 
sitions from any matching M are made according to the following rule: 

I. With probability �89 let M ' =  M; otherwise, go to step 2. 

2. Select an edge e = { u, v} ~ E u.a.r, and set 

+ e if both u and v are unmatched in M; 

M'  = + e -- e' if exactly one of u and v is matched in M 

and e' is the matching edge; 

otherwise. 

3. Go to M'  with probability min{ 1, rrj,(M')/g~,(M)}. 

Note that implementing one step of this process is simple; in par- 
ticular, the probability in step 3 involves only the ratio of the weights of M'  
and M, namely/2tM't-tMI, which is easy to compute. It is not hard to verify 
that this Markov chain is ergodic and reversible, with equilibrium distribu- 
tion ~,. 

By simulating the above Markov chain for sufficiently many steps 
until it reaches equilibrium, and observing its final state, one is effectively 
able to sample from the distribution ~,.  By repeated independent sampling 
at suitable values of/2, good statistical estimates of any desired coefficient 
a.,. can be computed, as follows. 

First, we show how to reduce the problem of computing as to that of 
computing the partition function itself at a suitable value/2 =/~. So suppose 
we know Z(/~). Then we sample from the distribution ~ and observe the 
proportion of matchings of cardinality s in the sample; clearly, this is an 
unbiased estimator of the quantity a.,.fis/Z(~), enabling us to read off the 
value of a,.. The value/2 =f i  is chosen so as to ensure that the proportion 
we are trying to estimate is not prohibitively small: that this is always 
possible follows from the fact that the coefficients a,. are log-concave, i.e., 

~< .2 ~17,2o~ This fact implies that there is a value/2 =f i  for which a s _ l a s +  I -~. u s .  

a.j~"=max,.,{a,.,l~"'}, i.e., the matchings of cardinality s have largest 
aggregated weight in the distribution n~. (The ideal value is fi = a.,._ ~/a,.; in 
practice a suitable value can be determined experimentally by adjusting/2 
until the observed distribution n~, peaks around matchings of cardinality s.) 
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This means that the proportion we are trying to estimate is at least 
(m + 1)-  ~, so by a routine variance calculation a sample of size only O(m) 
suffices for a good statistical estimate. 7 

It remains to describe how to compute the partition function itself at 
a given point p =ft. The strategy is to express Z(fi) as the product 

z(/~) = 
Z(,.~) xZ(#~_, )  • 2 1 5  , 

Z(/t,._~) (,u,._2) x ' ' "  Z(/ l , )  Z(,uo) t,Uo~ 

where 0 = # 0 < p ~  < - - .  </t , .=/2 is a suitably chosen sequence of values. 
Note that Z(lt o) = Z(0) = 1. We can then estimate each factor 
Z(lti)/Z(Iti_ 1) in this product by sampling from the distribution r~, i 
(obtained from the Markov chain in equilibrium with It =/ti), as follows. 
Consider the random variable f , ( M )  = (It;_ ~/#~)tMI, where M is a matching 
chosen from the distribution nt,. The expectation of this random variable 
is 

_ _  ~ I M I  _ 

' 

k. /l i ./ Z(/li) Z(lxi) Z(lt i) 

Thus the ratio Z(#;_ ~)/Z(lli) can be estimated by sampling matchings from 
the distribution rc~,, and computing the sample mean off,.. The sequence of 
values lli needs to be chosen to make the expectation Z(#;_~)/Z(pi) not 
too small, so that the sample size required for a statistically good estimate 
is not too large. In practice, a suitable sequence can be determined by 
experiment; however, by analyzing the variance of the estimator it is 
possible to prove that the sequence p~ = (2 IE[)-1 and IL~ = ( 1 + 1/m) ll~_ 
for 1 < i < r, with a sample size of only about O(m) for each ratio, suffices. 
(The tilde in the O-expression hides small logarithmic factors as well as 
constants.) In this case, the number of ratios, r, is also only O(m). For the 
details, see ref. 22, Section 4, (or ref. 20, Section 5, for an alternative, 
slightly less efficient approach). 

From the above description, it should be clear that a modest number 
[at  most O(m~-)] of independent samples from the Markov chain in equi- 
librium are enough for a good statistical estimate of any coefficient a.,.. 
However, in order to obtain each sample, the Markov chain must be 
simulated for sufficiently many steps that it is close to equilibrium: indeed, 
this turns out to be the dominant factor in the running time of the algo- 
rithm. To quantify this, one must prove a good a priori bound on the 
relaxation time, or mi?cing time of the chain, which is a challenging task. 

7 For simplicity, in this sketch we omit the dependence of the various quantities on the 
accuracy e and confidence 6, and treat these as constants. 
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This was done in refs. 20 and 38, where the mixing time was shown to be 
a polynomial function of rn and the parameter / t ,  specifically O(ll"~m [El2), 
where 11'= max{it, 1 }. This bound has since been substantially improved to 
t)(/~'m -~ ]El ): see ref. 22, Section 4. 

Examining the algorithm described above, we see that, in order to 
compute the coefficient as, we have to use the Markov chain with various 
parameters ~t <~ a,._ ~/a,.. (By log-concavity, this ratio increases with s.) 
Hence the time required for each sample will be no more than 
O(m 2 IE[ a,._~/a~). Thus the sampling time will be largest for the highest 
coefficient a,,, (i.e., the number  of dimer coverings of G), and is bounded by 
t)(m'-]El ct(G)). Putting this together with our earlier analysis, we deduce 
that the coefficient a,,, (and hence any coefficient a.,.) can be computed in 
time 0 (m 4 ]EI~(G)). 8 This expression will be polynomial in m iff 
e(G) ~< q(m) for some polynomial q, which explains Theorem 1. Note also 
that the running time of the approximation algorithm is linear in co(G), as 
we claimed in the previous subsection. 

2. R E C T A N G U L A R  L A T T I C E S  

We begin by introducing some definitions and notation concerning 
lattices. We will be interested in two classes of lattices: the first class are 
those with f i xed  boundary conditions, in which the lattice is not perfectly 
regular but has distinguished boundary vertices. Thus, we consider the 
d-dimensional rectangular (or Cartesian) lattice L(n, d), where the vertices 
are the n a integer lattice points in [ 1, n] a, and two points x, y are con- 
nected by an edge iff they are unit distance apart. The second class is 
lattices with periodic boundary conditions, in which the lattice includes 
wrap-around edges to make it toroidal; that is, we augment L(n, d) with an 
edge between (xl ..... xi_ i, 11, x,-+ ~ ..... xa) and (x~ ..... x~_ 1, 1, x~+ ~ ..... Xd), for 
each i. We will write [,(n, d) for the periodic lattice. 

Throughout  the remainder of the paper, we shall adopt the termi- 
nology of graphs and matchings introduced in Section 1.3. Thus we view 
LOt, d) and L(n, d) as graphs with 2m = n a vertices, and we always assume 
that n is even, so that both L(n, d) and L(n, d) contain a perfect matching 
(dimer covering). In the next section, we will be working with general 

Note that the quantity e(G) appears only by virtue of the highest coefficient a,,. For lower 
coefficients a,. it is replaced by the smaller ratio a,_ ~/a,. It follows that one can obtain all 
the coefficients a~ with s ~<(1 -~ )m in time polynomial in m ~/~, regardless of the value of 
e(G). However, this running time grows exponentially with ( I - p) -1 where p = 1 - ~ is the 
maximum dimer density. Note also that the above algorithm provides a fpras for the entire 
partition function Za--though of course not for all its coefficients--regardless of the value 
of co(a). 
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vertex-transitive graphs with an even number, 2m, of vertices; it is known 
that all such graphs contain a perfect matchingJ 3~1 For any graph G, we 
will denote by ~# the set of perfect matchings in G and by v.,V" the set of 
near-perfect matchings (monomer-dimer coverings with exactly two 
monomers). In any matching (monomer-dimer covering), we refer to the 
set of unmatched vertices in the graph as holes, and we write ~4r(u, v) for 
the set of near-perfect matchings with holes u and v. 

In this section, all the graphs we consider will be bipartite, with m 
vertices on each side of the bipartition. It will sometimes be convenient to 
view the vertices on one side of the bipartition as being colored white, and 
those on the other side black. (In the case of the two-dimensional lattice, 
this coloring corresponds to the usual black and white coloring of the 
checkerboard squares which form the dual graph.) Note that in any near- 
perfect matching, one hole is white and the other black. 

Recall that our aim is to construct efficient approximation algorithms 
for the number of monomer-dimer  coverings of various lattice graphs with 
any specified number of dimers. This notion of efficient approximation 
algorithm is formalized as a fully-polynomial randomized approximation 
scheme (fpras), as defined in Section 1.2. All our algorithms will appeal to 
Theorem 1 of Section 1.3, which says that it is sufficient to demonstrate a 
suitable upper bound on the quantity ~ (G)=  [.X]/[J/[, the ratio of the 
number of near-perfect matchings to the number of perfect matchings in 
the graph G. (Note that ~ is well defined for all the graphs we consider 
because [J/[ > 0.) Specifically, to get a fpras we need to show that c~(G)~< 
q(m) for 2m-vertex lattices G, where q is a polynomial. 

We now proceed to prove that such a relationship holds for families 
of rectangular lattice graphs, and (in the next section) for more general 
vertex-transitive graphs. The technique that we use in our proofs relies on 
the structure of the union of two matchings in a graph. Consider the sub- 
graph C consisting of the union of the edges in two perfect matchings M~ 
and M 2. If we color the edges from Mt red and those from M 2 blue, we 
find that every vertex is adjacent to exactly one red edge and one blue edge, 
so C is the union of even-length cycles, each of which alternates colors. 
(Some of the~e cycles may be trivial, consisting of a single edge colored 
both red and blue.) Clearly the converse is also true, i.e., any covering of 
the graph with even-length cycles which alternate colors defines two perfect 
matchings: the set of red edges and the set of blue edges. 

Similarly, suppose we have two near-perfect matchings, NI with holes 
u and v, and N_, with holes u' and v', where u, u', v, and v' are distinct 
vertices. Then in the subgraph C defined by the union of the red edges NI 
and the blue edges N_,, vertices u, u', v, and v' all have degree one and all 
other vertices have degree two. So C consists of even-length alternating 
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Fig. 1. The union of two near-perfect matchings. 

cycles, plus two alternating paths whose endpoints are u, u', v, and v'. 
Moreover, either both of these paths have even length or both have odd 
length. See Fig. 1. 

Our proofs rely on the observation that, if u' is a neighbor of u and 
v' is a neighbor of v, then by augmenting C with edges { u, u' } and { v, v'}, 
we can ensure that every vertex has degree two. When the graph is bipar- 
tite, the resulting subgraph must consist solely of even-length cycles, and 
therefore the cycle containing u and u' must also contain v and v'. By 
recoloring some of the edges on this new cycle, we can force it to alternate 
colors so that the cycle cover defines two perfect matchings. We use this 
observation to define a mapping from the set of pairs JV(u, v) x ~,V(u', v') 
to the set of pairs Jr  x J / t h a t  is injective, which in turn, by virtue of the 
symmetry properties of the lattice, implies that IJffl is not much larger 
than [J#[. 

We are now in a position to state our first result. 

Theorem 2. For the d-dimensional periodic lattice /Z(n, d), the 
ratio r d)) is bounded above by n2a/4. 

Before proving this theorem, we combine it with Theorem 1 to obtain 
the following immediate corollary. 

Corollary 3. There exists a fpras for the number of monomer-  
dimer coverings with any specified number of dimers in the d-dimensional 
periodic lattice L(n, d), for any fixed dimension d. 

Proof  o f  Theorem 2. Let J / a n d  .4 r be the sets of perfect and near- 
perfect matchings, respectively, in L(n, d). First we fix two holes, u and v. 
We will show that, regardless of the choice of u and v, it is the case that 
IJV(u, v)[ ~< [J#[. Summing over all choices of a white hole u and a black 
hole v, this implies that [jIr[ <~n2a[j#[/4, so that o~(L(n, d ) ) =  [~4r[/[Jtl ~< 
11"-'1/4, as claimed. 

To prove the above bound on [JV(u, v)[, note first that we may 
assume that u and v are not adjacent in G: if they are, then trivially 
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Fig. 2. Mapping two near-perfect matchings to two perfect matchings. 

[JV'(u, v)[ ~< IJ//[, since any matching in JV(u, v) can be extended to a 
perfect matching by adding the edge { u, v}. Now, let u' be the neighbor 
one to the right of u, i.e., u' = u + ( 1, 0 ..... 0) (or u' = u + ( 1 - n, 0,..., 0) if the 
first coordinate of u is 17). Similarly, let v' be the neighbor one to the right 
of v. Our assumption that u and v are not adjacent ensures that u, u', v, v' 
are all distinct. 

We proceed to construct an injection ~b from JV(u, v) x v4~(u ', v') into 
,/r x Jr To do this, let N~ ~ Jff(u, v) and N2 ~ ~V'(u', v'), and consider the 
subgraph C of/~,(n, d) defined by the union of red edges Nl,  blue edges N 2, 
and special edges {u, u'} and {v, v'}. If we color the special edges red, then 
u' and v' are each adjacent to two red edges, and every other vertex is adja- 
cent to one edge of each color; if we now flip the colors of the edges along 
one of the paths from u' to v', every vertex will be adjacent to exactly one 
edge of each color. To avoid ambiguity, we choose the path from u' to v' 
which does not pass through u. As we saw earlier, the sets of colored edges 
now define two perfect matchings (see Fig. 2). 

We need to check that this map ~b is injective: given any pair of perfect 
matchings (M~, M2) in the image of the map, we show that we can 
uniquely reconstruct the pair of near-perfect matchings, one with holes u 
and v and the other with holes u' and v', that are mapped by ~b to 
(M], M2). Note that the union of any pair of matchings in the image of ~b 
always contains an alternating cycle that includes both of the edges {u, u'} 
and {v, v'}. Now color the edges of the matching containing {u, u'} red, 
and the edges of the other matching blue. By flipping the colors of the 
edges along the path from u' to v' (again choosing the path which avoids 
u, for consistency), we make u' adjacent to two red edges. Since u' and v' 
are the holes of some near-perfect matching, they lie on opposite sides of 
the bipartition and any path between them must have odd length. There- 
fore, after the flipping operation v' must be adjacent to two red edges as 
well, while all other vertices are still adjacent to one edge of each color. If 
we now remove the edges {u, u'} and {v, v'}, the colored edges must 
correspond to the two near-perfect matchings that are mapped by ~b to 
(Ml, M2). 
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The above construction demonstrates that IX(u,  v)l. I ~ ( u ' ,  v')l ~< 
I~1"-, To finish the proof, we use the structure of the lattice L(n, d): in a 
periodic lattice, the operation of shifting a matching one position to the 
right is a bijection between the sets Y ( u ,  v) and ~ ( u ' ,  v'), so IJd(u, v)l = 
[JK(U', v')l. Thus the above relationship gives lY(u,v)12~<IJr -', which 
implies I./K(u, v)l ~< IJ#l as required. I 

Remark. It should be clear from the above proof that Theorem 2 
(and hence Corollary 3) generalizes to "hybrid" lattices that have fixed 
boundary conditions in some dimensions provided there exists at least one 
dimension in which the lattice has periodic boundary conditions (thus 
allowing shifting to the right). It also holds in more general bipartite 
rectangular lattices of size n~ x n2 x ... x na with periodic boundary condi- 
tions (i.e., for any dimension i in which the boundary is periodic, n; must 
be even). 

The following theorem extends the above technique to handle two- 
dimensional lattices with fixed boundaries. Again we show that in these 
lattices the number of near-perfect matchings cannot be too large com- 
pared to the number of perfect matchings, and then appeal to Theorem 1. 

T h e o r e m  4. For the two-dimensional lattice with fixed boundaries 
L(n, 2), the ratio o~(L(n, 2)) is bounded above by n4/4. 

Corollary 5. There exists a fpras for the number of monomer-  
dimer coverings with any specified number of dimers in the two-dimen- 
sional lattice with fixed boundaries L(n, 2). 

Proof of Theorem 4. Let r be a map which shifts the lattice L(n, 2) 
one position to the right in 7/z; that is, for a vertex w =  (w~, w2), define 
r(w) = (w~ + 1, wz). We extend this map to matchings in the natural way: 
if N is a matching in L(n, 2), then r(N) is the matching in [2, n +  1] x 
[ 1, n] defined by (r(x), r(y)) ~ r(N) iff (x, y) e N. 

Let Jg and JV be the sets of perfect of near-perfect matchings, respec- 
tively, in the lattice L(n, 2). As in the last proof, we will fix holes u and v 
and show that IX(u,v) l  ~<1.1#1. We do this by defining an injection 
qkJl/'(u,v) x,Ar(u,v)C--,J/xJ[ as follows. Let N~,NzeY(u ,v )  be two 
near-perfect matchings. Consider the subgraph C obtained by taking the 
union of N~ with a shifted version of Nz and adding the two special edges 
as before, i.e., C=Utu'r(N2)u{{u,u '} ,{v ,v '}} ,  where u ' = r ( u ) a n d  
v' =r(v). Then all the vertices in the leftmost column 1 and the rightmost 
column n + 1 have degree one in C, and all other vertices have degree two. 
Thus C is the union of cycles of even length and paths with each endpoint 
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Fig. 3. Union of  NI and r(N2). 

in either the first or (n + 1 )th column (see Fig. 3). Color the edges from N~ 
red and the edges from r(N,_) blue. 

We will argue that any path or cycle which passes through u and u' 
must also pass through v and v'. Since C is bipartite, this is immediate if 
u and u' lie on a cycle, so we focus on the case where u and u' lie on a path; 
here the planarity of L(n, 2) will play a crucial role. The proof is by con- 
tradiction, and there are two cases to consider (see Fig. 4). 

First, suppose that we have a path P from the first column to the 
(n + 1)th column which passes through u and u', and not through v and v'. 
Without loss of generality we can assume that v and v' lie below P. Then 
P starts with a red edge, ends with a blue edge, and has one special edge, 
so it has odd length. It follows that if P starts at a black (respectively, 
white) vertex, then it ends at a white (respectively, black) vertex. Therefore, 
the number of vertices in the first column above P has opposite parity to 
the number of vertices in the (n + 1)th column above P. (Since n is even, 
corresponding vertices in each of these columns fall on the same side of the 
black-and-white bipartition). But consider the set of all vertices that lie 
above the path P. There must be an even number of these vertices lying in 
the first through nth columns, since these vertices are matched in Ni,  and 
an even number lying in the second through (n + 1 )th columns, since these 
vertices are matched in N2. This is a contradiction. 

1L t 
O ---- 

1/t 
o 

n + l  

I U 
C 

u s 

I 
1/# 

n + l  

Fig. 4. Proof of Theorem 4. 

822/83,/3-4-24 
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Second, suppose that P, the path going through u and u', starts and 
ends in the first column. By interchanging the roles of u, u' and v, v' if 
necessary, we may assume without loss of generality that v and v' lie out- 
side the cycle defined by the path P and the first column. Now P starts and 
ends with a red edge and has one special edge, so it must have even length. 
If it starts at a black (respectively, white) vertex, then it must end at a 
black (respectively, white) vertex, so there is an odd number of vertices in 
the first column that lie between these endpoints. Let S be the set" of points 
that lie strictly inside the path P. Then [S[ must be even since N~ matches 
all the vertices in S. But N2 matches all the vertices in S except those which 
lie in the first column, a contradiction since this number is odd. 

Therefore we can conclude that u, u', v, v' all lie on the same even- 
length cycle or the same path. In either case we can proceed as in the proof  
of Theorem 2: color the special edges red and then flip the colors of the 
edges along the path between u' and v' (in the case of a cycle, where 
this is ambiguous, we always choose the path which does not pass 
through u). The sets of colored edges then define two perfect matchings M~ 
and r(M2). 

Furthermore, given any two matchings in the image of the map ~b we 
can uniquely reconstruct the pair of near-perfect matchings which are their 
preimage, so ~b is injective. To see this, note that any element in the image 
of ~b consists of two perfect matchings M~ and M2 such that M~ w z(M2) 
contains a cycle or path which passes through all of u, u', v, v', and from 
here we can reconstruct N l with holes u and v and z(N2) with holes u' and 
v' by reversing the color flipping operation as in the proof  of Theorem 2. 
Thus we have [Y(u ,  v)[ ~< [J/[. Summing over choices of u and v, we get 
[.A/'[ ~<n41,//r which yields the required bound on ~(G). II 

Remark. The above proof, and hence Theorem 4 and Corollary 5, 
extend in obvious fashion to n~ x 172 lattices with fixed boundaries where n~ 
is even. 

3. OTHER LATTICES 

The following theorem extends the techniques from the last section to 
handle other lattices. More precisely, we can, in polynomial time, 
approximately count the number of monomer-dimer coverings with any 
specified number of dimers in any finite vertex-transitive graph. 

Recall that a graph G is vertex-transitive if, for any two vertices u and 
v in G, there exists an automorphism of G (i.e., a bijection from the vertex 
set to itself that preserves adjacency) which maps u to v. This class of 
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graphs includes most other commonly studied lattices with periodic bound- 
ary condition's, such as the triangular lattice, the hexagonal lattice, and the 
body- and face-centered cubic lattices, as well as all finite Cayley graphs. It 
does not, however, include lattices with fixed boundary conditions. 

Theorem 6. Let G be a vertex-transitive graph with 2m vertices. 
Then ~(G)~<4m 3, and 0c(G)~<m 2 if in addition G is bipartite. 

Note that this theorem, applied to the bipartite vertex-transitive graph 
/,(n, d), yields precisely the same bound on 0~ as Theorem 2. 

Corollary 7. There exists a fpras for the number of monomer-  
dimer coverings with any specified number of dimers in any finite vertex- 
transitive graph. 

Proof of Theorem 6. Let x, y be a pair of vertices in G such 
Iv4r(x, y)[ = m a x  .... [~/'(u, v)[. Now consider any pair of holes u and v, and 
let v' be a neighbor of v such that d(u, v')<d(u, v), where d( . ,  �9 ) denotes 
distance in G. Since G is vertex-transitive, there exists a mapping of the 
vertex set which sends x to v' and preserves adjacency in G; let u' be the 
image of y under this mapping. Clearly the mapping is a bijection between 
~,g(x, y) and ~/'(u', v'), so [Jff(u', v')[ is also maximum. 

We first consider the simpler case when G is bipartite. We will con- 
struct an injection ~b from X ( u ,  v)x ~4r(u', v') to X ( u ,  u ' )x  J / ,  implying 
that 

IX(u, v)l. IX(u', v')l ~< IX(u, u')l-IJ#l 

and hence that iX(u ,  v)l ~< [JY[, since [,4r(u', v')[ is maximum. Summing 
over all pairs (u, v), we get IxI ~m2lJ#l, which verifies the second claim 
in the theorem. 

The injection ~ is defined as follows: let NleJg'(u,v) and 
N~ e ,Ar(u', v'), and consider the subgraph C = N l kA N 2 k..){{ V, /.Y} }. Color 
the edges of N 1 red and the edges of N2 blue. In C, all vertices have degree 
two except for u and u', which both have degree one. Since G is bipartite, 
all cycles in Cohave even length, so the edge { v, v'}, which is adjacent to 
one red edge and one blue edge, cannot close a cycle. Therefore {v, v'} 
must lie on the path P with endpoints u and u'. By coloring the edge { v, v'} 
red and then flipping the colors of the edges along the portion of P between 
u' and v', we can ensure that P has alternating colors, starting and ending 
with blue edges. Now the blue edges form a perfect matching, and the red 
edges form a near-perfect matching with holes u and u', i.e., an element of 
JV'(u, u') (see Fig. 5). This completes the definition of ~. Injectivity follows 
by an argument very similar to that in the proof of Theorem 2. 
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Fig. 5. Definition of ~b (shown on a region of the periodic hexagonal latti.ce). 

In the general case, where G is not necessarily bipartite, the above 
injection breaks down because we cannot assume that the edge { v, v'} lies 
on the path between u and u'. However, as we shall see in a moment, it is 
possible to construct an injection ~ from the set X ( u ,  v)x X ( u ' ,  v') into 
the somewhat larger set 

(X(u, u') x ~g) u (X(u, v') x X(u',  v)) 

This implies that 

IX(u, v)l. IX(u', v')l < IX(u, v')l. IX(u', v)l + IJKI. IX(u, u')l 

and hence, since IX(u ' ,  v')l is maximum, 

IX(u, v)l ~ IX(u, v')l + I~1 (1) 

Now from Eq. (1) it is easy to deduce that 

IX(u, v)l <~ d(u, v)I//r (2) 

To see this, use induction on d(u, v): the claim is immediate when 
d(u, v) = 1; when d(u, v) > 1, the induction hypothesis gives [Jff(u, v')l ~< 
d(u ,r  which together with (1) implies that 
IX(u,v)l <~d(u,v)IJgl. Finally, summing (2) over all pairs (u, v), we 
obtain IXI~<Y~ .... 2m [JLl~<4m 3 I~1, and hence the first claim of the 
theorem. 

It remains only to construct the injection ~b. Let N1 E X ( u ,  v) and 
N2 e X ( u ' ,  v'), and again consider the subgraph C = N1 u N2 w { { v, v'} }, 
with the edges of N~ colored red and those of N 2 colored blue. If the edge 
{ v, v'} lies on the path with endpoints u and u', we perform the same con- 
struction as in the bipartite case and obtain an element of ~"(u, u') x ~ ' .  
If, on the other hand, the edge { v, v'} lies on a cycle, we remove it and flip 
the colors of all edges along the path from v to v'; the effect of this is to 
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Case 2: v and v r lie on a cycle. 

Definition of ~b (shown on a region of the periodic triangular lattice). 

create a red matching with holes u and v', and a blue matching with holes 
u' and v, i.e., an element of X ( u ,  v') x X ( u ' ,  v) (see Fig. 6). Checking that 
~p is injective is again similar to the proof of Theorem 2. | 

4. C O N C L U D I N G  R E M A R K S  A N D  O P E N  P R O B L E M S  

In this paper, we have used elementary combinatorial techniques to 
show that, for any vertex-transitive graph G, the quantity 0c(G) is small, i.e., 
the number of near-perfect matchings (monomer-dimer coverings with two 
monomers) exceeds the number of perfect matchings (dimer coverings) in 
G by only a small polynomial factor. This allowed us to deduce rigorous 
polynomial-time bounds for a Monte Carlo algorithm for counting 
coverings in such graphs with any specified number of dimers. 

Our results show that, for a vertex-transitive graph G with 2m vertices, 
the quantity 0c(G) lies in the range Ira, m ~-] when G is bipartite, and 
[m, 4m 3] in general. (The upper bounds come from Theorem 6, while the 
lower bound is trivial--see Section 1.3.) It would be interesting to know 
whether either of these bounds can be improved for general vertex-tran- 
sitive graphs, and to determine the precise value of ~ for the d-dimensional 
rectangular lattice L(n, d). Apart from their inherent interest, these bounds 
would affect the efficiency of the Monte Carlo algorithm since the quantity 
~(G) enters into the running time as explained in Section 1.4. 
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Our technique appears to break down in the case of lattices with fixed 
boundary conditions (in dimensions higher than two). Arguments similar 
to those we have presented can be used to reduce the question of bounding 

(at least in the bipartite case) to that of establishing the local property 
that the number of near-perfect matchings with fixed holes u and v is poly- 
nomially related to the number of matchings with holes u' and v', where u' 
is a neighbor of u and v' is a neighbor of v. However, we have been unable 
to use this observation to obtain a proof for fixed boundary conditions in 
higher dimensions. 

One can go further and ask for a precise characterization of those 
families of graphs for which the ratio ~ is polynomially bounded, and hence 
for which the monomer-dimer problem is tractable using the above Monte 
Carlo approach. This question is also of considerable combinatorial 
interest, since counting perfect matchings (dimer coverings) in a bipartite 
graph is equivalent to computing the permanent of a 0-1 matrix. ~33~ This is 
a widely studied problem in combinatorics for which the existence of an 
efficient approximation algorithm is an important open question in the 
theory of computation. ~4~ The Monte Carlo algorithm sketched above 
runs in polynomial time for a wider class of graphs than any other 
currently known algorithm, so it is of interest to establish precisely which 
graphs are amenable to it. (For other simpler, but apparently less widely 
applicable approximation algorithms, see refs. 25, 19 and 35.) Moreover, it 
is conceivable that any graph G for which ~(G) is large can be efficiently 
decomposed in such a way that the resulting components have a small 
value of 0c, and hence fall within the scope of the Monte Carlo algorithm; 
this idea was used in ref. 23 to obtain an approximation scheme for general 
graphs whose running time, though still exponential, improves substan- 
tially on naive deterministic methods. 

The question of whether ~ is polynomially bounded for a given family 
of graphs is apparently rather subtle. It is not hard to construct "bad" 
examples. Consider, for example, the family of graphs { G,,: 11 = 1, 2 ..... } 
defined in Fig. 7, where G,, has 2m = 4n + 2 vertices. It is easy to see that G,, 
has only one perfect matching, but more than 2 " = 2  t ' ' -~/2 near-perfect 
matchings (consider just those with holes at u and v), so the ratio 
o~(G,,) > 2" is exponentially large. On the other hand, ~ is known to be 
polynomially bounded for all s.ufficiently dense graphs, all graphs with suffi- 
ciently good "expansion" properties, and almost every random graph in a 
suitable model, t-~~ Interestingly, the technique used to prove this 
property in all these cases is not applicable to lattices since it involves 
constructing short augmenting paths for near-perfect matchings; such paths 
do not exist in lattice graphs, which have large diameter. The injective 
mapping technique presented in this paper is therefore a new approach, 
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Fig. 7. The "bad" graph G,,. 

and we hope that it will lead to a better understanding of the behavior of 
the ratio 0c in general graphs. 

Finally, in the case of lattices, we conjecture that the explicit mappings 
we have exhibited between near-perfect matchings with two fixed holes and 
perfect matchings might shed light on the behavior of the number of near- 
perfect matchings as a function of the positions of the holes. In physical 
terms, this corresponds to the correlation between a pair of monomers in 
a sea of dimers, a quantity for which partial results were obtained in two 
dimensions by Fisher and StephensonJ 7~ For example, our techniques 
immediately yield a simple and rigorous proof that, for the rectangular 
lattice/~(n, d) in any dimension d, the number of configurations with two 
monomers at any fixed pair of vertices u, v is bounded by n-d times the 
number of configurations with two adjacent monomers. A more careful 
analysis may enable one to make more precise statements about this 
correlation. 
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